There are several approaches to define tensors.
...
...
...
Anyway, given $U$ an open set of a manifold $M$, there are two defining properties for a map
$$ S:\mathfrak{X}(U)\times \mathfrak{X}(U)\times \mathfrak{X}(U)\times \cdots\to \mathfrak{X}(U)\times\mathfrak{X}(U)\times \cdots $$to be a tensor:
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: